
MP-SPDZ at 6

Marcel Keller

CSIRO’s Data61

27 November 2024



Imagine a Magic Black Box Between a Set of Parties

a+ b = c

Parties

▶ Have handles to values

▶ Don’t know the values

▶ Can input values

▶ Can agree on computations
creating new values

▶ Can agree on outputting values



Secure Multiparty Computation: Black Box as Protocol

A

B

z

y

x

Wanted: f (x , y , z)

▶ Computation on secret inputs

▶ Replace black box
▶ Central questions in MPC

▶ How many honest parties?
▶ Dishonest parties still follow the protocol?

▶ MP-SPDZ supports > 40 protocol variants
across all properties



MP-SPDZ at CCS’20

▶ 30+ protocol variants

▶ Live preprocessing

▶ Mixed circuits

▶ C++ API

▶ Python API

▶ Dynamic optimization: like HyCC (CCS’18) but all the way

▶ Basic machine learning



MP-SPDZ since CCS’20

▶ Complex machine learning (e.g., AlexNet training)

▶ Decision tree training

▶ Secure shuffling

▶ Replace KOS with SoftSpokenOT

▶ Fantastic Four

▶ ATLAS protocol (CRYPTO’21 update on DN07)

▶ Dealer protocol (popular in privacy-preserving ML)

▶ Distributed key generation for homomorphic encryption

▶ Simpler interfaces for machine learning (PyTorch integration)

▶ ARM support

▶ Bytecode reusability



Compilation with Budget (HyCC)

What to do with loops in MPC?

Consecutive execution slow due to cost of communication rounds

Complete optimization has limits: compilation time, RAM/disk usage

Use a budget!

1. Unroll loop until budget exceeded

2. Optimize unrolled loop

3. Use sequential execution on top of unrolled loop

Example

Need 1000 repetitions: optimize 100, call 10 times



Bytecode Reusability

Mathematical Building Blocks

▶ Comparison, exponentation, logarithm. . .

▶ In C/C++: simple call of function or CPU instruction

▶ In MPC: want parallelization so no simple function calls

MP-SPDZ
▶ Find and combine parallelizable invocations of building blocks

▶ Compile functionality once depending on protocol options

▶ Reuse bytecode object (faster compilation, lower disk usage)

▶ Extra benefit: calling high-level code from C++ (new in version 0.4.0)



Crosstabulation Example

for i in range(n):

for j in range(n):

if x[i] == y[j]:

sums[cat[i]] += val[j]

▶ Example used by Hastings et al. (S&P’19)
to evaluate MPC compilers

▶ Not necessarily optimal but good test case
▶ Nested loops
▶ Quadratic run-time



Crosstabulation Benchmarks

100 101 102 103
10−1

100

101

102

103

Number of records

T
ot
al

ti
m
e
(s
)

EMP∗

MP-SPDZ
Obliv-C∗

ABY
Frigate∗

PICCO

Sharemind†

CBMC-GC∗

MPyC
ObliVM∗

Time to compile and run cross-tabulation with different MPC frameworks.
∗ denotes a garbled circuit implementation, and † denotes an emulation.



Secure Shuffling

Have Secret-shared list [x1], . . . , [xn]

Want ▶ Secret-shared list [xπ(1)], . . . , [xπ(n)]
▶ π random and secret permutation
▶ Ability to repeat for both π and π−1

Approaches

▶ Switching networks (Waksman)

▶ Permute by maximimally unqualified set (honest majority only)

▶ Dual execution for malicious security (akin SPDZ-wise)

▶ Recent advances for 2PC using MPC-friendly PRFs (no available implementation)



Application of Secure Shuffling: Sorting

Secret Permutation Operation

Have [x1], . . . , [xn] such that x1 = π(1), . . . , xn = π(n)
[y1], . . . , [yn]

Want [yπ(1)], . . . , [yπ(n)] without revealing π

1. Reveal secret shuffle ρ of [x1], . . . , [xn] ⇒ public description of ρ ◦ π
2. Apply ρ ◦ π to [y1], . . . , [yn]

3. Revert secret shuffle ρ on [y(ρ◦π)(1)], . . . , [y(ρ◦π)(1)]

Radix Sorting

Build permutation needed to sort bit by bit, then apply to data



Application of Secure Shuffling: Decision Tree Training

Problem
▶ Decision trees are trained level by level where samples are sorted into nodes

▶ Naive MPC has complexity O(#nodes ·#samples)

Solution by Hamada et al., PETS’22

▶ Sort samples by node at every level and use secret node markers

▶ Heavily relies on shuffling



From KOS15 to SoftSpokenOT

KOS15
OT extension with malicious security based on IKNP with simple check
Security claim broken by SoftSpokenOT paper

SoftSpokenOT

▶ More sophisticated OT extension using codes different to IKNP

▶ Parameter determining trade-off between computation and communication

▶ Integrated in MP-SPDZ via libOTe

Reception

SoftSpokenOT considered secure and more flexible but some keep talking about KOS.
Simplicity?



Outlook

▶ MP-SPDZ remains popular (citations/GitHub issues)

▶ Unmatched protocol variety

▶ Unmatched programmability?


