MP-SPDZ at 6

Marcel Keller

CSIRO’s Data61

27 November 2024

Imagine a Magic Black Box Between a Set of Parties

L3Y
Oy

at+b=c

| 2

>
>
>

v

Parties

Have handles to values
Don't know the values
Can input values

Can agree on computations
creating new values

Can agree on outputting values

Secure Multiparty Computation: Black Box as Protocol

» Computation on secret inputs
» Replace black box

» Central questions in MPC

» How many honest parties?
» Dishonest parties still follow the protocol?

» MP-SPDZ supports > 40 protocol variants
across all properties

Wanted: f(x,y, z)

MP-SPDZ at CCS'20

30+ protocol variants

Live preprocessing

Mixed circuits

C++ API

Python API

Dynamic optimization: like HyCC (CCS'18) but all the way

Basic machine learning

vVvVvvyVvVYVvyyypy

MP-SPDZ since CCS'20

VVvVyVvVyVvVVyVVYVYyVYY

Complex machine learning (e.g., AlexNet training)
Decision tree training

Secure shuffling

Replace KOS with SoftSpokenOT

Fantastic Four

ATLAS protocol (CRYPTO'21 update on DNO7)
Dealer protocol (popular in privacy-preserving ML)
Distributed key generation for homomorphic encryption
Simpler interfaces for machine learning (PyTorch integration)
ARM support

Bytecode reusability

Compilation with Budget (HyCC)

What to do with loops in MPC?

Consecutive execution slow due to cost of communication rounds

Complete optimization has limits: compilation time, RAM /disk usage

Use a budget!
1. Unroll loop until budget exceeded
2. Optimize unrolled loop

3. Use sequential execution on top of unrolled loop

Example
Need 1000 repetitions: optimize 100, call 10 times

Bytecode Reusability

Mathematical Building Blocks

» Comparison, exponentation, logarithm. ..
» In C/C++: simple call of function or CPU instruction

» In MPC: want parallelization so no simple function calls

MP-SPDZ
» Find and combine parallelizable invocations of building blocks
» Compile functionality once depending on protocol options
> Reuse bytecode object (faster compilation, lower disk usage)

» Extra benefit: calling high-level code from C++ (new in version 0.4.0)

Crosstabulation Example

for i in range(n):
for j in range(n):
if x[i] == y[j]:
sums [cat[1]] += vall[j]

» Example used by Hastings et al. (S&P'19)
to evaluate MPC compilers
» Not necessarily optimal but good test case

» Nested loops
» Quadratic run-time

Crosstabulation Benchmarks

—EMP*
r —— MP-SPDZ
10° £ —— Obliv-C*
_ i - ABY
% 102 Frigate*
£ g PICCO
; 10! 7 o Sharemindf
5 =7 ’ CBMC-GC*
i ; MPyC
100 ¢ ’ ObliVM*
]_0’1 Eonl il ol il 1l

100 10t 102 103
Number of records

Time to compile and run cross-tabulation with different MPC frameworks.
* denotes a garbled circuit implementation, and T denotes an emulation.

Secure Shuffling

Have Secret-shared list [x1], ..., [xn]

Want » Secret-shared list [x;(1)]; - - -, [Xr(m)]
» 7 random and secret permutation
» Ability to repeat for both 7 and 7!

Approaches
» Switching networks (Waksman)
» Permute by maximimally unqualified set (honest majority only)

» Dual execution for malicious security (akin SPDZ-wise)

» Recent advances for 2PC using MPC-friendly PRFs (no available implementation)

Application of Secure Shuffling: Sorting

Secret Permutation Operation
Have [x1],...,[xn] such that x; = 7(1),...,x, = m(n)
[)/1]7 T [yn]
Want [yr(1)],..., [yx(n)] without revealing 7

1. Reveal secret shuffle p of [x1], ..., [xn] = public description of po 7

2. Apply pom to [yi],...,[ynl
3. Revert secret shuffle p on [y(,or)(1)]s - - - [V(pom)(1)]

Radix Sorting
Build permutation needed to sort bit by bit, then apply to data

Application of Secure Shuffling: Decision Tree Training

Problem
» Decision trees are trained level by level where samples are sorted into nodes
» Naive MPC has complexity O(#nodes - #samples)

Solution by Hamada et al., PETS'22

» Sort samples by node at every level and use secret node markers

» Heavily relies on shuffling

From KOS15 to SoftSpokenOT

KOS15

OT extension with malicious security based on IKNP with simple check
Security claim broken by SoftSpokenOT paper

SoftSpokenOT
» More sophisticated OT extension using codes different to IKNP
» Parameter determining trade-off between computation and communication
> Integrated in MP-SPDZ via libOTe

Reception
SoftSpokenOT considered secure and more flexible but some keep talking about KOS.
Simplicity?

Outlook

» MP-SPDZ remains popular (citations/GitHub issues)
» Unmatched protocol variety

» Unmatched programmability?

