
Computation with a Dishonest Majority

Marcel Keller

CSIRO’s Data61

7 April 2022



From Honest to Dishonest Majority

Honest-Majority Secret Sharing

Parties know enough to compute multiplication within secret sharing (e.g., Shamir)

Dishonest-Majority Secret Sharing

Parties know very little, so need more techniques



How to Share a Secret (Additively)

Shares

x1

x2

x3

Secret x
=

∑
i xi

x



How to Share a Secret (Additively)

Shares

x1 y1 x1 + y1 c · x1

x2 y2 x2 + y2 c · x2

x3 y3 x3 + y3 c · x3

Secret x y x + y c · x
=

∑
i xi =

∑
i yi =

∑
i (xi + yi ) =

∑
i (c · xi )

x y x + y c · x



Towards Multiplication

Have
I Input

I Linear operations

I Output

Want
Multiplication

Assume (for now)

Special randomness



Multiplication with Random Triple
(Beaver Randomization)

Have: x , y , addition in black box

Want: x · y

x · y = (x + a− a) · (y + b − b)

= (x + a) · (y + b) − (y + b) · a − (x + a) · b + a · b

Masked and revealed
(one-time pad)

Random secret triple
(preprocessed)



Multiplication with Random Triple
(Beaver Randomization)

Have: x , y , addition in black box

Want: x · y

x · y = (x + a− a) · (y + b − b)

= (x + a) · (y + b) − (y + b) · a − (x + a) · b + a · b

Masked and revealed
(one-time pad)

Random secret triple
(preprocessed)



Multiplication with Random Triple
(Beaver Randomization)

Have: x , y , addition in black box, ( a , b , a · b for random a, b)

Want: x · y

x · y = (x + a− a) · (y + b − b)

= (x + a) · (y + b) − (y + b) · a − (x + a) · b + a · b

Masked and revealed
(one-time pad)

Random secret triple
(preprocessed)



Multiplication with Random Triple
(Beaver Randomization)

Pre: [x ], [y ], ([a], [b], [ab]) for uniformly random a, b

Post: [xy ]

1. Parties open [x + a] and [y + b] to σ and ρ

2. Parties output σ · ρ− ρ · [a]− σ[b] + [ab]



Checking Correctness

Problem with additive secret sharing

Every share counts, so changing a share changes the secret value.

Solution: Redundancy

Use second secret sharing to check the first.



How to Share a Secret

Shares

Tag shares Tag key

x1

x2

x3

Secret x
=

∑
i xi

=
∑

i γ(x)i =
∑

i αi

= x



How to Share a Secret (with Authentication)

Shares Tag shares Tag key

x1 γ(x)1 α1

x2 γ(x)2 α2

x3 γ(x)3 α3

Secret x α · x α
=

∑
i xi =

∑
i γ(x)i =

∑
i αi

= x



How to Share a Secret (with Authentication)

Shares Tag shares Tag key

x1 + y1 γ(x)1 + γ(y)1 α1

x2 + y2 γ(x)2 + γ(y)2 α2

x3 + y3 γ(x)3 + γ(y)3 α3

Secret x + y α · (x + y) α
=

∑
i xi + yi =

∑
i γ(x)i + γ(y)i =

∑
i αi

= x + y



Authentication Security

Definition
Corrupt parties cannot create correct shares to “wrong” value.

Proof
Assume correct share [x ], [γ(x)] and adversary creating a correct share
[x + e], [γ(x) + f ] for e 6= 0. Recall γ(x) = α · x . Then,

f · e−1 = (γ(x + e)− γ(x)) · e−1

= (α · (x + e)− α · x) · e−1 = α

Requirements

α is secret and every non-zero value is invertible (e.g., compute modulo a prime).



How to Reveal a Secret (with Authentication)

Protocol
x : Party i holds additive shares (xi , γ(x)i , αi )

Reveal Parties broadcast xi , compute x =
∑

xi
Correctness not guaranteed: could send anything

Check I Parties broadcast (γ(x)i − x · αi )

by committing first (rushing adversary)

I Parties check
∑

i (γ(x)i − x · αi )
?
= x · α− x · α = 0

Commitment
I Send “encrypted” information first, open later

I In above context: cannot depend on others’ parties messages



How to Reveal a Secret (with Authentication)

Protocol
x : Party i holds additive shares (xi , γ(x)i , αi )

Reveal Parties broadcast xi , compute x =
∑

xi
Correctness not guaranteed: could send anything

Check I Parties broadcast (γ(x)i − x · αi )

by committing first (rushing adversary)

I Parties check
∑

i (γ(x)i − x · αi )
?
= x · α− x · α = 0

Commitment
I Send “encrypted” information first, open later

I In above context: cannot depend on others’ parties messages



How to Reveal a Secret (with Authentication)

Protocol
x : Party i holds additive shares (xi , γ(x)i , αi )

Reveal Parties broadcast xi , compute x =
∑

xi
Correctness not guaranteed: could send anything

Check I Parties broadcast (γ(x)i − x · αi )
by committing first (rushing adversary)

I Parties check
∑

i (γ(x)i − x · αi )
?
= x · α− x · α = 0

Commitment
I Send “encrypted” information first, open later

I In above context: cannot depend on others’ parties messages



Multiplication with Random Triple
(Beaver Randomization)

Have: x , y , addition in black box, ( a , b , a · b for random a, b)

Want: x · y

x · y = (x + a− a) · (y + b − b)

= (x + a) · (y + b) − (y + b) · a − (x + a) · b + a · b

Masked and revealed
(one-time pad)

Random secret triple
(preprocessed)



Preprocessing MPC Protocols

Preprocessing “Online”

Public-key cryptography Inputs

Output
correlated randomness

Advantages
I No secret inputs on the line when using crypto
⇒ No one gets hurt if protocol aborts!

I Online computation might have many rounds,
but preprocessing is constant-round.



Preprocessing MPC Protocols

Preprocessing “Online”

Public-key cryptography Inputs

Output
correlated randomness

Public-key cryptography options
I Homomorphic encryption: allows operations on encrypted values

I Oblivious transfer: simplest building block for MPC



Section 1

Homomorphic Encryption



Semi-Homomorphic Encryption

Encryption

Encryption Encpk and decryption Decsk such that

Decsk(Encpk(a)) = a

but Encpk(a) looks “random” to anyone without the secret key sk .

Operations

I Decsk(Encpk(a)� Encpk(b)) = a + b

I Decsk(Encpk(a)� b) = a · b



Two-Party Multiplication Protocol

Pre: PA knows a and (pk , sk), PB knows b and pk

Post: PA knows cA, PB knows cB such that cA + cB = a · b
I PA sends Encpk(a) to PB

I PB computes E := b � Encpk(a)� Encpk(cB) for random cB
I PB sends E to PA

I PA decrypts E to cA



Complete Multiplication with Two-Party Protocol

Pre: Party Pi knows shares ai , bi for [a], [b] where a =
∑

ai , b =
∑

bi

Post: Party Pi knows share ci of [c] = [ab]

I For every pair i 6= j , Pi and Pj run two-party protocol on (ai , bj) to obtain shares
cAij and cBij such that cAij + cBij = ai · bj

I Every party Pi outputs ci = ai · bi +
∑

i 6=j(c
A
ij + cBji )

∑
i

ci =
∑
i

ai · bi +
∑
i 6=j

(cAij + cBji )

=
∑
i

ai · bi +
∑
i 6=j

(cAij + cBij ) =
∑
i

ai · bi +
∑
i 6=j

ai · bj = a · b



Why Not Use Homomorphic Encryption Directly?

I HE is most efficient when working on many values in parallel
⇒ Perfect for triple generation

I Not using sensitive data simplifies checking for malicious behavior



Somewhat Homomorphic Encryption

Semi-homomorphic

I Decsk(Encpk(a)) = a

I Decsk(Encpk(a)� Encpk(b)) = a + b

I Decsk(Encpk(a)� b) = a · b

Multiply ciphertexts

Decsk(Encpk(a)� Encpk(b)) = a · b



Distributed Homomorphic Encryption

Assume
Can share secret key sk such that the the shares sk0, . . . , skn−1 together allow
decryption in a protocol that keeps sk secret.

Encryption to secret sharing

1. Party Pi broadcast Encpk(fi ) for random fi

2. Parties decrypt Encpk(a)�
∑

i Encpk(fi ) to (a +
∑

i fi )

3. Party P0 outputs ai = a +
∑

i fi − f0, all other parties Pi output −fi

∑
i

ai = a +
∑
i

fi − f0 +
∑
i 6=0

−fi = a



Secure Multiplication Using Somewhat Homomorphic Encryption

Pre: Party Pi knows shares ai , bi for [a], [b] where a =
∑

ai , b =
∑

bi

Post: Party Pi knows share ci of [c] = [ab]

I Party Pi broadcasts Encpk(ai ) and Encpk(bi )

I Parties convert (
∑

i Encpk(ai ))� (
∑

i Encpk(bi )) to secret sharing



Towards Malicious Security

Adding Authentication Tags

Run multiplicatoin protocol between [α] and ([a], [b], [c]) to get authenticated secret
sharing.

Cheating Potential

What if corrupted parties use different shares for a · b and (a · b · α)?

Solution
Generate two independent triples and check one using the other.



Triple Sacrifice

Pre: Independent authenticated triples ([a], [b], [c]) and ([g ], [f ], [h])

Post: Triple ([a], [b], [c]) with c = ab guaranteed

1. Generate fresh random value t

2. Open t · [a]− [f ] as ρ and [b]− [g ] as σ

3. Compute and open t · [c]− [h]− σ · [f ]− ρ · [g ]− σ · ρ
4. Abort if the result is not zero or the opening is incorrect

Correctness Straight-forward*

Security Adversary has to commit to error before t is fixed. If the domain is large
enough, the check is unlikely to pass.*



Section 2

Oblivious Transfer



1-out-of-2 Oblivious Transfer

Sender

OT

s0

s1

b

sb

Receiver

I The Sender inputs two strings s0 and s1 and learns nothing.

I The Receiver inputs a bit b and learns only sb.



1-out-of-2 Oblivious Transfer

Sender

OT

s0

s1

b

sb

Receiver

Why is it so special?
I Only slightly more than one input, one output

I Sending any of the inputs directly would break security



Partial Secure Multiplication from Oblivious Transfer*

OT

s0

s1

b

sb

Pre: I PA knows element a ∈ ZM

I PB knows bit b

Post: PA knows cA, PB knows cB such that
cA + cB = a · b

I PA samples random cA
I PA and PB use OT with s0 := cA, s1 := cA − a

I PB learns sb and outputs cB := −sb.



Complete Secure Multiplication from Oblivious Transfer

From element-bit to element-element
Break down ZM ×ZM multiplication to logM multiplications of bit and element in ZM :

x =

logM∑
i=0

2i · xi ⇒ x · y =

logM∑
0

2i · (xi · y)

From known values to secret sharing

Run pair-wise multiplication on shares as before



Constructing OT Like Diffie-Hellman*

Ingredients

I Discrete logarithm

I Hash function

I Symmetric encryption

Cost
Discrete exponentation is expensive and limits throughput to 10,000 OT per second.
How to avoid?



OT Extension — Basic Idea

Few OTs

Cheap symmetric crypto

Many OTs

Speedup

From 10,000 OT per second to 7 million



OT Extension with Passive Security

1. Base OTs k random OTs / k bits

2. Extend length with PRG k random OTs / n bits

3. Introduce correlation k correlated OTs / n bits

4. Transpose n correlated OTs / k bits

5. Hash to break correlation n random OTs / k bits

Computational security parameter k = 128
Number of OTs produced n ≥ 128



OT Extension with Passive Security

1. Base OTs k random OTs / k bits

2. Extend length with PRG k random OTs / n bits

3. Introduce correlation k correlated OTs / n bits

4. Transpose n correlated OTs / k bits

5. Hash to break correlation n random OTs / k bits

Computational security parameter k = 128
Number of OTs produced n ≥ 128



OT Extension with Passive Security

1. Base OTs k random OTs / k bits

2. Extend length with PRG k random OTs / n bits

3. Introduce correlation k correlated OTs / n bits

4. Transpose n correlated OTs / k bits

5. Hash to break correlation n random OTs / k bits

Computational security parameter k = 128
Number of OTs produced n ≥ 128



OT Extension with Passive Security

1. Base OTs k random OTs / k bits

2. Extend length with PRG k random OTs / n bits

3. Introduce correlation k correlated OTs / n bits

4. Transpose n correlated OTs / k bits

5. Hash to break correlation n random OTs / k bits

Computational security parameter k = 128
Number of OTs produced n ≥ 128



OT Extension with Passive Security

1. Base OTs k random OTs / k bits

2. Extend length with PRG k random OTs / n bits

3. Introduce correlation k correlated OTs / n bits

4. Transpose n correlated OTs / k bits

5. Hash to break correlation n random OTs / k bits

Computational security parameter k = 128
Number of OTs produced n ≥ 128



Another Look at OT

Standard
OT

s0,0, s0,1

= s0,0 ⊕ z0

s1,0, s1,1

= s1,0 ⊕ z1

s2,0, s2,1

= s2,0 ⊕ z2

s0,x0

= s0,0 + x0 · z0

s1,x1

= s1,0 + x1 · z1

s2,x2

= s2,0 + x2 · z2

x0

x1

x2

xi : selection bit
si ,0, si ,1, ti , zi , y: strings



Another Look at OT

Standard
OT

s0,0, s0,1 = s0,0 ⊕ z0

s1,0, s1,1 = s1,0 ⊕ z1

s2,0, s2,1 = s2,0 ⊕ z2

s0,x0 = s0,0 + x0 · z0

s1,x1 = s1,0 + x1 · z1

s2,x2 = s2,0 + x2 · z2

x0

x1

x2

xi : selection bit
si ,0, si ,1, ti , zi , y: strings



Another Look at OT

Standard
OT

t0, z0

t1, z1

t2, z2

t0 + x0 · z0

t1 + x1 · z1

t2 + x2 · z2

x0

x1

x2

xi : selection bit
si ,0, si ,1, ti , zi , y: strings



Another Look at OT

Correlated
OT

t0, y

t1, y

t2, y

t0 + x0 · y

t1 + x1 · y

t2 + x2 · y

x0

x1

x2

xi : selection bit
si ,0, si ,1, ti , zi , y: strings



Another Look at OT

Correlated
OT

T , y

Q = T + x⊗ y

x

x, y: strings / vectors in (F2)k and (F2)n, respectively
Q,T ,Z : matrices in (F2)k×n

x⊗ y: tensor product, matrix of all possible products



Another Look at OT

Correlated
OT

y

Q = T + x⊗ y

x

T

x, y: strings / vectors in (F2)k and (F2)n, respectively
Q,T ,Z : matrices in (F2)k×n

x⊗ y: tensor product, matrix of all possible products



Summary: Dishonest-Majority Computation

Multiplication using preprocessed triples

I Making use of vectorized homomorphic encryption

I Simplify checking on malicious behavior

Security against malicious behavior

I Use double sharing to check on openings

I Sacrifice triples to guarantee correct triples

I Zero-knowledge proofs to check on encryption

I More also required for OT-based generation


	Homomorphic Encryption
	Oblivious Transfer

