Computation with a Dishonest Majority

Marcel Keller

CSIRO's Data61

7 April 2022

From Honest to Dishonest Majority

Honest-Majority Secret Sharing

Parties know enough to compute multiplication within secret sharing (e.g., Shamir)

Dishonest-Majority Secret Sharing

Parties know very little, so need more techniques

How to Share a Secret (Additively)

	Shares	
Û	<i>x</i> ₁	
	x ₂	
	<i>x</i> ₃	
Secret	X	
	$=\sum_{i}x_{i}$	
	X	

How to Share a Secret (Additively)

	Shares			
Û	x_1	<i>y</i> 1	$x_1 + y_1$	$c \cdot x_1$
	<i>x</i> ₂	<i>y</i> 2	$x_2 + y_2$	$c \cdot x_2$
	<i>x</i> ₃	<i>y</i> 3	$x_3 + y_3$	$c \cdot x_3$
Secret	X	У	x + y	$c \cdot x$
	$=\sum_{i}x_{i}$	$=\sum_{i}y_{i}$	$=\sum_{i}(x_{i}+y_{i})$	$=\sum_{i}(c\cdot x_{i})$
	X	y	x + y	$C \cdot X$

Towards Multiplication

Have

- ► Input
- Linear operations
- Output

Want

Multiplication

Assume (for now)

Special randomness

Have: x, y, addition in black box

Want: x · y

Have: x, y, addition in black box

 $x \cdot y = (x + a - a) \cdot (y + b - b)$

Want: $x \cdot y$

$$= (x + a) \cdot (y + b) - (y + b) \cdot a - (x + a) \cdot b + a \cdot b$$

Have: x, y, addition in black box, $(a, b, a \cdot b)$ for random a, b)

Want: $x \cdot y$

Pre:
$$[x], [y], ([a], [b], [ab])$$
 for uniformly random a, b
Post: $[xy]$

- 1. Parties open [x+a] and [y+b] to σ and ρ
- 2. Parties output $\sigma \cdot \rho \rho \cdot [a] \sigma[b] + [ab]$

Checking Correctness

Problem with additive secret sharing

Every share counts, so changing a share changes the secret value.

Solution: Redundancy

Use second secret sharing to check the first.

How to Share a Secret

	Shares	
Ü	x_1	
O	<i>x</i> ₂	
	<i>x</i> ₃	
Secret	$=\sum_{i}^{X}x_{i}$	
	$=\sum_{i}x_{i}$	

How to Share a Secret (with Authentication)

	Shares	Tag shares	Tag key
W	x_1	$\gamma(x)_1$	α_1
0	<i>x</i> ₂	$\gamma(x)_2$	$lpha_2$
	<i>x</i> ₃	$\gamma(x)_3$	$lpha_{3}$
Secret	X	$\alpha \cdot x$	α
	$=\sum_{i}x_{i}$	$=\sum_{i}\gamma(x)_{i}$	$=\sum_{i}\alpha_{i}$
	=	= X	

How to Share a Secret (with Authentication)

_	Shares	Tag shares	Tag key
The state of the s	$x_1 + y_1$	$\gamma(x)_1 + \gamma(y)_1$	α_1
0	$x_2 + y_2$	$\gamma(x)_2 + \gamma(y)_2$	α_2
	$x_3 + y_3$	$\gamma(x)_3 + \gamma(y)_3$	α_3
Secret	x + y	$\alpha \cdot (x + y)$	α
	$=\sum_i x_i + y_i$	$=\sum_{i}\gamma(x)_{i}+\gamma(y)_{i}$	$=\sum_{i}\alpha_{i}$
	=	= x + y	

Authentication Security

Definition

Corrupt parties cannot create correct shares to "wrong" value.

Proof

Assume correct share $[x], [\gamma(x)]$ and adversary creating a correct share $[x+e], [\gamma(x)+f]$ for $e \neq 0$. Recall $\gamma(x) = \alpha \cdot x$. Then,

$$f \cdot e^{-1} = (\gamma(x+e) - \gamma(x)) \cdot e^{-1}$$
$$= (\alpha \cdot (x+e) - \alpha \cdot x) \cdot e^{-1} = \alpha$$

Requirements

 α is secret and every non-zero value is invertible (e.g., compute modulo a prime).

How to Reveal a Secret (with Authentication)

Protocol

 \times : Party *i* holds additive shares $(x_i, \gamma(x)_i, \alpha_i)$

Reveal Parties broadcast x_i , compute $x = \sum x_i$

Correctness not guaranteed: could send anything

How to Reveal a Secret (with Authentication)

Protocol

- \times : Party i holds additive shares $(x_i, \gamma(x)_i, \alpha_i)$
 - Reveal Parties broadcast x_i , compute $x = \sum x_i$ Correctness not guaranteed: could send anything
 - Check Parties broadcast $(\gamma(x)_i x \cdot \alpha_i)$
 - ▶ Parties check $\sum_i (\gamma(x)_i x \cdot \alpha_i) \stackrel{?}{=} x \cdot \alpha x \cdot \alpha = 0$

How to Reveal a Secret (with Authentication)

Protocol

- \times : Party i holds additive shares $(x_i, \gamma(x)_i, \alpha_i)$
 - Reveal Parties broadcast x_i , compute $x = \sum x_i$
 - Correctness not guaranteed: could send anything
 - Check Parties broadcast $(\gamma(x)_i x \cdot \alpha_i)$
 - by committing first (rushing adversary)
 - ▶ Parties check $\sum_{i} (\gamma(x)_{i} x \cdot \alpha_{i}) \stackrel{?}{=} x \cdot \alpha x \cdot \alpha = 0$

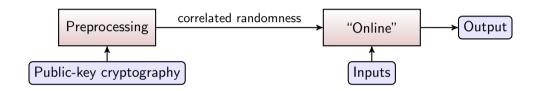
Commitment

- Send "encrypted" information first, open later
- ▶ In above context: cannot depend on others' parties messages

Have: x, y, addition in black box, $(a, b, a \cdot b)$ for random a, b)

Want: $x \cdot y$

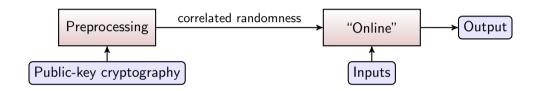
Preprocessing MPC Protocols



Advantages

- ▶ No secret inputs on the line when using crypto
 - \Rightarrow No one gets hurt if protocol aborts!
- Online computation might have many rounds, but preprocessing is constant-round.

Preprocessing MPC Protocols



Public-key cryptography options

- Homomorphic encryption: allows operations on encrypted values
- Oblivious transfer: simplest building block for MPC

Section 1

Homomorphic Encryption

Semi-Homomorphic Encryption

Encryption

Encryption Enc_{pk} and decryption Dec_{sk} such that

$$Dec_{sk}(Enc_{pk}(a)) = a$$

but $Enc_{pk}(a)$ looks "random" to anyone without the secret key sk.

Operations

- ightharpoonup $\operatorname{Dec}_{sk}(\operatorname{Enc}_{pk}(a) \boxplus \operatorname{Enc}_{pk}(b)) = a + b$
- ▶ $Dec_{sk}(Enc_{pk}(a) \odot b) = a \cdot b$

Two-Party Multiplication Protocol

Pre: P_A knows a and (pk, sk), P_B knows b and pk

Post: P_A knows c_A , P_B knows c_B such that $c_A + c_B = a \cdot b$

- \triangleright P_A sends $\operatorname{Enc}_{pk}(a)$ to P_B
- $ightharpoonup P_B$ computes $E:=b \ \Box \ \operatorname{Enc}_{pk}(a) \ \Box \ \operatorname{Enc}_{pk}(c_B)$ for random c_B
- \triangleright P_B sends E to P_A
- \triangleright P_A decrypts E to c_A

Complete Multiplication with Two-Party Protocol

Pre: Party P_i knows shares a_i, b_i for [a], [b] where $a = \sum a_i, b = \sum b_i$ Post: Party P_i knows share c_i of [c] = [ab]

- For every pair $i \neq j$, P_i and P_j run two-party protocol on (a_i, b_j) to obtain shares c_i^A and c_i^B such that $c_i^A + c_i^B = a_i \cdot b_i$
- ▶ Every party P_i outputs $c_i = a_i \cdot b_i + \sum_{i \neq i} (c_{ii}^A + c_{ii}^B)$

$$egin{aligned} \sum_i c_i &= \sum_i a_i \cdot b_i + \sum_{i
eq j} (c^A_{ij} + c^B_{ji}) \ &= \sum_i a_i \cdot b_i + \sum_{i
eq j} (c^A_{ij} + c^B_{ij}) = \sum_i a_i \cdot b_i + \sum_{i
eq j} a_i \cdot b_j = a \cdot b \end{aligned}$$

Why Not Use Homomorphic Encryption Directly?

- ▶ HE is most efficient when working on many values in parallel
 - ⇒ Perfect for triple generation
- Not using sensitive data simplifies checking for malicious behavior

Somewhat Homomorphic Encryption

Semi-homomorphic

- ightharpoonup Dec_{sk}(Enc_{pk}(a)) = a
- ightharpoonup $\operatorname{Dec}_{sk}(\operatorname{Enc}_{pk}(a) \boxplus \operatorname{Enc}_{pk}(b)) = a + b$
- ightharpoonup $\operatorname{Dec}_{sk}(\operatorname{Enc}_{pk}(a) \odot b) = a \cdot b$

Multiply ciphertexts

 $\operatorname{Dec}_{sk}(\operatorname{Enc}_{pk}(a) \odot \operatorname{Enc}_{pk}(b)) = a \cdot b$

Distributed Homomorphic Encryption

Assume

Can share secret key sk such that the shares sk_0, \ldots, sk_{n-1} together allow decryption in a protocol that keeps sk secret.

Encryption to secret sharing

- 1. Party P_i broadcast $\operatorname{Enc}_{pk}(f_i)$ for random f_i
- 2. Parties decrypt $\operatorname{Enc}_{pk}(a) \boxplus \sum_{i} \operatorname{Enc}_{pk}(f_i)$ to $(a + \sum_{i} f_i)$
- 3. Party P_0 outputs $a_i = a + \sum_i f_i f_0$, all other parties P_i output $-f_i$

$$\sum_{i} a_{i} = a + \sum_{i} f_{i} - f_{0} + \sum_{i \neq 0} -f_{i} = a$$

Secure Multiplication Using Somewhat Homomorphic Encryption

Pre: Party P_i knows shares a_i, b_i for [a], [b] where $a = \sum a_i, b = \sum b_i$ Post: Party P_i knows share c_i of [c] = [ab]

- ▶ Party P_i broadcasts $Enc_{pk}(a_i)$ and $Enc_{pk}(b_i)$
- ▶ Parties convert $(\sum_i \operatorname{Enc}_{pk}(a_i)) \boxdot (\sum_i \operatorname{Enc}_{pk}(b_i))$ to secret sharing

Towards Malicious Security

Adding Authentication Tags

Run multiplicatoin protocol between $[\alpha]$ and ([a],[b],[c]) to get authenticated secret sharing.

Cheating Potential

What if corrupted parties use different shares for $a \cdot b$ and $(a \cdot b \cdot \alpha)$?

Solution

Generate two independent triples and check one using the other.

Triple Sacrifice

Pre: Independent authenticated triples ([a], [b], [c]) and ([g], [f], [h])

Post: Triple ([a], [b], [c]) with c = ab guaranteed

- 1. Generate fresh random value t
- 2. Open $t \cdot [a] [f]$ as ρ and [b] [g] as σ
- 3. Compute and open $t \cdot [c] [h] \sigma \cdot [f] \rho \cdot [g] \sigma \cdot \rho$
- 4. Abort if the result is not zero or the opening is incorrect

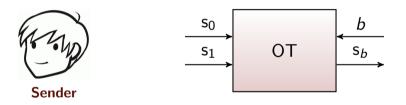
Correctness Straight-forward*

Security Adversary has to commit to error before *t* is fixed. If the domain is large enough, the check is unlikely to pass.*

Section 2

Oblivious Transfer

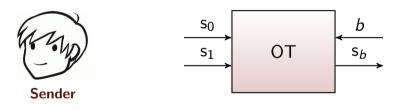
1-out-of-2 Oblivious Transfer



Receiver

- ▶ The **Sender** inputs two strings s_0 and s_1 and learns nothing.
- ▶ The Receiver inputs a bit b and learns only s_b .

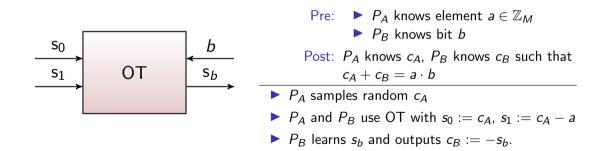
1-out-of-2 Oblivious Transfer



Why is it so special?

- Only slightly more than one input, one output
- ▶ Sending any of the inputs directly would break security

Partial Secure Multiplication from Oblivious Transfer*



Complete Secure Multiplication from Oblivious Transfer

From element-bit to element-element

Break down $\mathbb{Z}_M \times \mathbb{Z}_M$ multiplication to log M multiplications of bit and element in \mathbb{Z}_M :

$$x = \sum_{i=0}^{\log M} 2^i \cdot x_i \quad \Rightarrow \quad x \cdot y = \sum_{i=0}^{\log M} 2^i \cdot (x_i \cdot y)$$

From known values to secret sharing

Run pair-wise multiplication on shares as before

Constructing OT Like Diffie-Hellman*

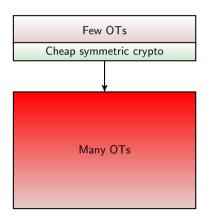
Ingredients

- ► Discrete logarithm
- ► Hash function
- Symmetric encryption

Cost

Discrete exponentation is expensive and limits throughput to 10,000 OT per second. How to avoid?

OT Extension — Basic Idea



Speedup

From $10,000\ OT$ per second to 7 million

- 1. Base OTs
- 2. Extend length with PRG
- 3. Introduce correlation
- 4. Transpose
- 5. Hash to break correlation

k random OTs / k bits

k random OTs / n bits

k correlated OTs / n bits

n correlated OTs / k bits

n random OTs / k bits

k = 128



- 1. Base OTs
- 2. Extend length with PRG
- 3. Introduce correlation
- 4. Transpose
- 5. Hash to break correlation

k random OTs / k bits
k random OTs / n bits
k correlated OTs / n bits
n correlated OTs / k bits
n random OTs / k bits

k = 128



- 1. Base OTs
- 2. Extend length with PRG
- 3. Introduce correlation
- 4. Transpose
- 5. Hash to break correlation

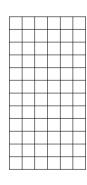
k random OTs / k bits
k random OTs / n bits
k correlated OTs / n bits
n correlated OTs / k bits
n random OTs / k bits

Computational security parameter

k = 128

Number of OTs produced

n > 128



- 1. Base OTs
- 2. Extend length with PRG
- 3. Introduce correlation
- 4. Transpose
- 5. Hash to break correlation

k random OTs / k bits
k random OTs / n bits
k correlated OTs / n bits
n correlated OTs / k bits
n random OTs / k bits

k = 128

Number of OTs produced $n \ge 128$

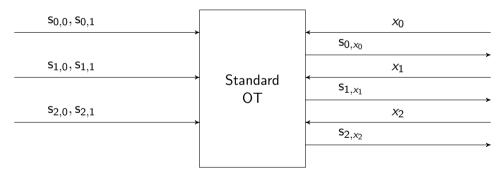
- 1. Base OTs
- 2. Extend length with PRG
- 3. Introduce correlation
- 4. Transpose
- 5. Hash to break correlation

k random OTs / k bits k random OTs / n bits

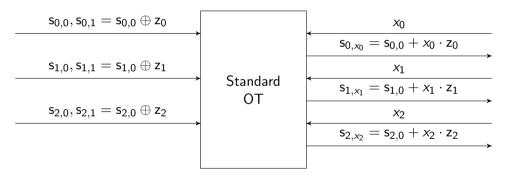
k correlated OTs / n bits n correlated OTs / k bits

n random OTs / k bits

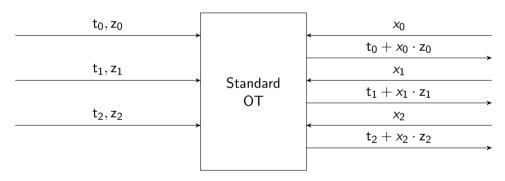
k = 128



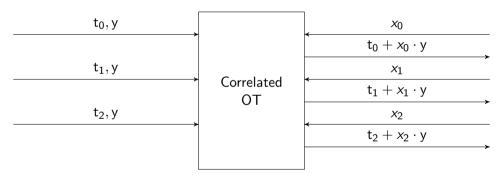
 x_i : selection bit



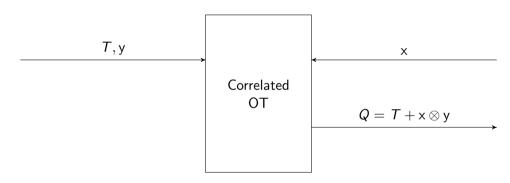
 x_i : selection bit



 x_i : selection bit



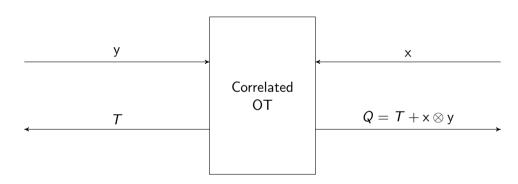
 x_i : selection bit



x, y: strings / vectors in $(\mathbb{F}_2)^k$ and $(\mathbb{F}_2)^n$, respectively

Q, T, Z: matrices in $(\mathbb{F}_2)^{k \times n}$

 $x \otimes y$: tensor product, matrix of all possible products



x, y: strings / vectors in $(\mathbb{F}_2)^k$ and $(\mathbb{F}_2)^n$, respectively Q, T, Z: matrices in $(\mathbb{F}_2)^{k \times n}$ x \otimes y: tensor product, matrix of all possible products

Summary: Dishonest-Majority Computation

Multiplication using preprocessed triples

- Making use of vectorized homomorphic encryption
- Simplify checking on malicious behavior

Security against malicious behavior

- Use double sharing to check on openings
- Sacrifice triples to guarantee correct triples
- Zero-knowledge proofs to check on encryption
- ▶ More also required for OT-based generation