Computation with a Dishonest Majority

Marcel Keller

CSIRO’s Data61

7 April 2022

From Honest to Dishonest Majority

Honest-Majority Secret Sharing
Parties know enough to compute multiplication within secret sharing (e.g., Shamir)

Dishonest-Majority Secret Sharing
Parties know very little, so need more techniques

How to Share a Secret (Additively)

Shares
,4'}
) -
ﬁ) .
Secret X
= ZI Xi

How to Share a Secret (Additively)

Shares
@< X1 3%1 X1+ c- X1
0 Xo o X2 + Y2 C X2
% X3 V3 x3+y3 € X3
Secret X y X+y ¢-x
=% =D =2 ixity) =3ic-x)

Towards Multiplication

Have
> Input
» Linear operations
» Output

Want
Multiplication

Assume (for now)

Special randomness

Multiplication with Random Triple
(Beaver Randomization)

Have: B4, | addition in black box

Want:

Multiplication with Random Triple
(Beaver Randomization)

Have: B4, | addition in black box
Want: B354
xy =(x+a-a)-(y+b-0b)
= (x+a) - (y+b) —(y+b) -a—(x+a)-b+ a-b

Multiplication with Random Triple
(Beaver Randomization)

Have: I, [addition in black box, (1, [EJ. BB for random a, b)
Want:

EB3=(x+a—a) (y+b-0>b)

= (x+a) - (y+b) - (v+b) -BA- (x+2) - B+ B
Ay N
Masked and revealed Random secret triple
(one-time pad) (preprocessed)

Multiplication with Random Triple
(Beaver Randomization)

Pre: [x],[y], ([a],[b],[ab]) for uniformly random a, b
Post: [xy]

1. Parties open [x + a] and [y + b] to o and p
2. Parties output o - p — p - [a] — o[b] + [ab]

Checking Correctness

Problem with additive secret sharing
Every share counts, so changing a share changes the secret value.

Solution: Redundancy
Use second secret sharing to check the first.

How to Share a Secret

Shares
,4'3\ -
I8 X1
@® -
ﬁ) .
Secret X

How to Share a Secret (with Authentication)

Shares | Tag shares | Tag key
& deem
18 x1 Y(x)1 o
@ - v | «
% X3 Y(x)3 Qa3
Secret X - X Q@
= Yo | =X | =Y

How to Share a Secret (with Authentication)

Shares Tag shares Tag key
o)

T‘ X1+ Y01+ () a1
6 X2+ y2 ()2 +v(y)2 a2
%ﬁ X3+ y3 Y(x)3 + ()3 a3
Secret X+y a-(x+y) o'

=YXty | =) +y)i | =2«

x

Authentication Security

Definition
Corrupt parties cannot create correct shares to “wrong” value.

Proof
Assume correct share [x], [y(x)] and adversary creating a correct share
[x + €], [y(x) +] for e # 0. Recall y(x) = a - x. Then,

frel=(x+e)—7(x)-e

=(a-(x+e)—a-x)-el=a

Requirements
« is secret and every non-zero value is invertible (e.g., compute modulo a prime).

How to Reveal a Secret (with Authentication)

Protocol
: Party i holds additive shares (x;,v(x);, @)

Reveal Parties broadcast x;, compute x =) x;
Correctness not guaranteed: could send anything

How to Reveal a Secret (with Authentication)

Protocol
: Party i holds additive shares (x;,v(x);, @)

Reveal Parties broadcast x;, compute x =) x;
Correctness not guaranteed: could send anything

Check » Parties broadcast (y(x); — x - ;)

» Parties check > (v(x)i — x - o) Ix a-x-a=0

How to Reveal a Secret (with Authentication)

Protocol
: Party i holds additive shares (x;,v(x);, @)

Reveal Parties broadcast x;, compute x =) x;
Correctness not guaranteed: could send anything

Check » Parties broadcast (y(x); — x - ;)
by committing first (rushing adversary)

» Parties check > (v(x)i — x - o) Ix a-x-a=0

Commitment
» Send “encrypted” information first, open later

P In above context: cannot depend on others' parties messages

Multiplication with Random Triple
(Beaver Randomization)

Have: I, [addition in black box, (1, [EJ. BB for random a, b)
Want:

EB3=(x+a—a) (y+b-0>b)

= (x+a) - (y+b) - (v+b) -BA- (x+2) - B+ B
Ay N
Masked and revealed Random secret triple
(one-time pad) (preprocessed)

Preprocessing MPC Protocols

Preprocessing

correlated randomness

Y

)

[Public—key cryptography]

Advantages

» No secret inputs on the line when using crypto
= No one gets hurt if protocol aborts!

» Online computation might have many rounds,

but preprocessing is constant-round.

“Online”

- ©vn)

Preprocessing MPC Protocols

. correlated randomness
Preprocessing

)

[Public—key cryptography]

Public-key cryptography options

Y

“Online”

- ©vn)

» Homomorphic encryption: allows operations on encrypted values
» Oblivious transfer: simplest building block for MPC

Section 1

Homomorphic Encryption

Semi-Homomorphic Encryption

Encryption
Encryption Encp and decryption Decg such that

Decsc(Encpi(a)) = a
but Encpi(a) looks “random” to anyone without the secret key sk.

Operations

> Decq(Encpr(a) B Encp(b)) = a+ b
» Deco(Encpr(a) I b) =a- b

Two-Party Multiplication Protocol

Pre: Pa knows a and (pk, sk), Pg knows b and pk
Post: P4 knows ca, Pg knows cg such that ca +cg =a- b

» P, sends Encpi(a) to Pg

» Ppg computes E := b[] Encp(a) B Encp(cg) for random cg
> Pg sends E to Py

> P, decrypts E to ca

Complete Multiplication with Two-Party Protocol

Pre: Party P; knows shares a;, b; for [a],[b] where a =) a;, b=>_b;
Post: Party P; knows share ¢; of [c] = [ab]

» For every pair i # j, P; and P; run two-party protocol on (aj, bj) to obtain shares
c,-j‘ and cf such that c,-j‘ + c,-f = a; - b;

» Every party P; outputs ¢; = a; - b; + Z,-#(c,-j‘ + cJ-’,-S)

ZC’ Z"’ bi +Z CU +CJ'
i

i#

—Za, b+z cU+cU Za, b+Za, bj=a-b

i#j i#j

Why Not Use Homomorphic Encryption Directly?

» HE is most efficient when working on many values in parallel
= Perfect for triple generation

> Not using sensitive data simplifies checking for malicious behavior

Somewhat Homomorphic Encryption

Semi-homomorphic
» Decs(Encpk(a)) = a
» Decgk(Encpk(a) B Encpi(b)) = a+ b
» Decs(Encpr(a) D b) =a- b

Multiply ciphertexts
Decsk(Encpi(a) Ll Encp(b)) = a- b

Distributed Homomorphic Encryption

Assume

Can share secret key sk such that the the shares sk, ..., sk,_1 together allow
decryption in a protocol that keeps sk secret.

Encryption to secret sharing
1. Party P; broadcast Encp(f;) for random f;
2. Parties decrypt Encpi(a) BB Y, Encpr(fi) to (a+ >, f)
3. Party Py outputs a; = a+ >, fi — fo, all other parties P; output —f;

Za,-z&thﬁ—l%-FZ—f;za

i#0

Secure Multiplication Using Somewhat Homomorphic Encryption

Pre: Party P; knows shares aj, b; for [a],[b] where a =) aj, b= > b;
Post: Party P; knows share ¢; of [c] = [ab]

» Party P; broadcasts Encpi(a;) and Encpr(b;)
> Parties convert (3, Encpi(ai)) B (D, Encpk(bi)) to secret sharing

Towards Malicious Security

Adding Authentication Tags

Run multiplicatoin protocol between [a] and ([a], [b], [c]) to get authenticated secret
sharing.

Cheating Potential

What if corrupted parties use different shares for a- b and (a- b- «)?

Solution
Generate two independent triples and check one using the other.

Triple Sacrifice

Pre: Independent authenticated triples ([a], [b], [c]) and ([g], [f], [A])
Post: Triple ([a], [b], [c]) with ¢ = ab guaranteed

1. Generate fresh random value t

2. Open t-[a] —[f] as p and [b] — [g] as o

3. Compute and open t-[c]—[h]—c-[f]—p-[g] —0c-p
4. Abort if the result is not zero or the opening is incorrect
Correctness Straight-forward*

Security Adversary has to commit to error before t is fixed. If the domain is large
enough, the check is unlikely to pass.*

Section 2

Oblivious Transfer

1-out-of-2 Oblivious Transfer

So b
—_— «——
S1 oT Sh
—_— ———>

Sender

» The Sender inputs two strings sgp and s; and learns nothing.

» The Receiver inputs a bit b and learns only sp,.

Receiver

1-out-of-2 Oblivious Transfer

So
S1

Sender

Why is it so special?

» Only slightly more than one input, one output

oT

Sb

» Sending any of the inputs directly would break security

Receiver

Partial Secure Multiplication from Oblivious Transfer*

S0
S1

oT

Pre: » Pj knows element a € Zy
» Ppg knows bit b

<b— Post: P4 knows c4, Pg knows cg such that
Sh catcg=a-b
———

» P, samples random cy
» Py and Pg use OT with sp:=ca, 51 :=¢ca— a

» Pg learns s, and outputs cg := —sp.

Complete Secure Multiplication from Oblivious Transfer

From element-bit to element-element
Break down Zp x Zp multiplication to log M multiplications of bit and element in Z:

log M log M
X:ZT-X,- = X-y:Z2’-(X,-~y)
i=0 0

From known values to secret sharing
Run pair-wise multiplication on shares as before

Constructing OT Like Diffie-Hellman*

Ingredients
P Discrete logarithm
» Hash function

» Symmetric encryption

Cost
Discrete exponentation is expensive and limits throughput to 10,000 OT per second.
How to avoid?

OT Extension — Basic Idea

Few OTs

Cheap symmetric crypto

Speedup
From 10,000 OT per second to 7 million

OT Extension with Passive Security

Number of OTs produced

Base OTs
Extend length with PRG
Introduce correlation

Transpose

ok =

Hash to break correlation

k random OTs / k bits
k random OTs / n bits
k correlated OTs / n bits
n correlated OTs / k bits
n random OTs / k bits

Computational security parameter k = 128

n> 128

OT Extension with Passive Security

Number of OTs produced

Base OTs
Extend length with PRG
Introduce correlation

Transpose

ok =

Hash to break correlation

k random OTs / k bits
k random OTs / n bits
k correlated OTs / n bits
n correlated OTs / k bits
n random OTs / k bits

Computational security parameter k = 128

n> 128

OT Extension with Passive Security

Number of OTs produced

Base OTs
Extend length with PRG
Introduce correlation

Transpose

ok =

Hash to break correlation

k random OTs / k bits
k random OTs / n bits
k correlated OTs / n bits
n correlated OTs / k bits
n random OTs / k bits

Computational security parameter k = 128

n> 128

OT Extension with Passive Security

Number of OTs produced

Base OTs
Extend length with PRG
Introduce correlation

Transpose

ok =

Hash to break correlation

k random OTs / k bits
k random OTs / n bits
k correlated OTs / n bits
n correlated OTs / k bits
n random OTs / k bits

Computational security parameter k = 128

n> 128

OT Extension with Passive Security

Number of OTs produced

Base OTs
Extend length with PRG
Introduce correlation

Transpose

ok =

Hash to break correlation

k random OTs / k bits
k random OTs / n bits
k correlated OTs / n bits
n correlated OTs / k bits
n random OTs / k bits

Computational security parameter k = 128

n> 128

Another Look at OT

50,05 0,1

$1,0,51,1

$2,0,52,1

Xi:
Si,0,Si,1, ti, Zi, ¥t

selection bit
strings

Standard
oT

X0
SO,XO

X1
S1,x1

X2
S2,x0

Another Look at OT

50,0, 50,1 = 50,0 D Zo

$1,0,S1,1 = S1,0 D 21

$2,0,52,1 = S2,0 P 22
Xx;: selection bit

Si,0,Si,1, ti, Zi, ¥t

strings

Standard
oT

X0

S0,xp = S0,0 + X0 * Zo
X1

Sl = S1,0 + X121
X2

S2.x, = 2,0 T X2 - 22

Another Look at OT

o, 20

t1,z1

t2, 22

Xx;: selection bit
Si0,Si1,ti,zj,y: strings

Standard
oT

X0

to + X0 - 20

X1

t1 +x1-21

X2

to + X222

Another Look at OT

to,y

t1,y

to,y

Xx;: selection bit
Si0,Si1,ti,zj,y: strings

Correlated
oT

X0

to+Xx0-y

X1

t1+x1-y

X2

o +x2-y

Another Look at OT

Correlated

oT
R=T+x®y

x,y: strings / vectors in (F2)* and (IF2)", respectively
Q, T,Z: matrices in (IFy)k*n
X ®y: tensor product, matrix of all possible products

Another Look at OT

Correlated

oT
T R=T+x®y

x,y: strings / vectors in (F2)* and (IF2)", respectively
Q, T,Z: matrices in (IFy)k*n
X ®y: tensor product, matrix of all possible products

Summary: Dishonest-Majority Computation

Multiplication using preprocessed triples

» Making use of vectorized homomorphic encryption

» Simplify checking on malicious behavior

Security against malicious behavior

» Use double sharing to check on openings
» Sacrifice triples to guarantee correct triples
» Zero-knowledge proofs to check on encryption

» More also required for OT-based generation

	Homomorphic Encryption
	Oblivious Transfer

