
An Introduction to Multi-Party Computation

Marcel Keller

CSIRO’s Data61

28 January 2025

Millionaire’s Problem

$x

BP

$y

x < y?

Imagine a Magic Black Box Between a Set of Parties

a+ b = c

Parties

▶ Have handles to values

▶ Don’t know the values

▶ Can input values

▶ Can agree on computations
creating new values

▶ Can agree on outputting values

Secure Multiparty Computation: Black Box as Protocol

A

B

z

y

x

Wanted: f (x , y , z)

▶ Computation on secret inputs

▶ Replace black box
▶ Central questions in MPC

▶ How many honest parties?
▶ Dishonest parties still follow the protocol?

▶ MP-SPDZ supports > 40 protocol variants
across all properties

Core Technology: Secret Sharing

Random
Shares

x1

x2

x3

Secret x
=

∑
i xi

Core Technology: Secret Sharing

Random
Shares

x1 y1 x1 + y1 c · x1

x2 y2 x2 + y2 c · x2

x3 y3 x3 + y3 c · x3

Secret x y x + y c · x
=

∑
i xi =

∑
i yi =

∑
i (xi + yi) =

∑
i (c · xi)

Security of Secret Sharing

Example

▶ Secret 7, shares 3 and 4

▶ If you only know 3 but not 4, you can only guess

Mathematics
▶ Need a finite domain for uniform randomness

▶ Example: computation modulo 264 like 64-bit computers

What About Liars? (Malicious Security)

Problem
If the secret sharing is a simple sum, any party can alter the result by using the wrong
number.

Possible solution: Replication

If every party holds enough shares, they can check on each other.

Example Sharing x = a+ b + c
Party 1 holds (a, b), Party 2 holds (b, c), Party 3 holds (a, c)

Change in security model

It doesn’t take all parties to learn the secret.

Multiplication with Random Triple
(Beaver Randomization)

Have: x , y , addition in black box

Want: x · y

x · y = (x + a− a) · (y + b − b)

= (x + a) · (y + b) − (y + b) · a − (x + a) · b + a · b

Masked and revealed
(one-time pad)

Random secret triple
(preprocessed)

Multiplication with Random Triple
(Beaver Randomization)

Have: x , y , addition in black box

Want: x · y

x · y = (x + a− a) · (y + b − b)

= (x + a) · (y + b) − (y + b) · a − (x + a) · b + a · b

Masked and revealed
(one-time pad)

Random secret triple
(preprocessed)

Multiplication with Random Triple
(Beaver Randomization)

Have: x , y , addition in black box, (a , b , a · b for random a, b)

Want: x · y

x · y = (x + a− a) · (y + b − b)

= (x + a) · (y + b) − (y + b) · a − (x + a) · b + a · b

Masked and revealed
(one-time pad)

Random secret triple
(preprocessed)

Multiplication Protocol

▶ Fetch a , b , a · b
▶ Reveal (a+ x , b + y)

▶ Compute (x + a) · (y + b)− (y + b) · a − (x + a) · b + a · b

I/O Parallelization

z = x · y
u = z · w

1. Compute z

2. Compute u

z = x · y
u = v · w

1. Compute z and u

I/O Parallelization

z = x · y
u = z · w

1. Compute z

2. Compute u

z = x · y
u = v · w

1. Compute z and u

Unified C++ Interface

for (int i = 0; i < n; i++)

sum[i] = a[i] + b[i];

protocol.init_mul();

for (int i = 0; i < n; i++)

protocol.prepare_mul(a[i], b[i]);

protocol.exchange();

for (int i = 0; i < n; i++)

product[i] = protocol.finalize_mul();

▶ Addition is straightforward

▶ Similar for multiplication would lead
to sequential execution

▶ Prepare/exchange/finalize minimal
interface for parallel execution

Goal: Automatize I/O Parallelization

Manual parallelization is tedious:

x10 = x2 · x3
x11 = x8 + x4

x12 = x10 · x1
x13 = x7 + x9

x14 = x7 · x1
x15 = x9 + x12

x16 = x13 · x14
x17 = x0 + x11

x18 = x11 · x15
x19 = x13 · x7

x20 = x4 + x6

x21 = x16 + x2

x22 = x0 + x12

x23 = x22 + x14

x24 = x11 + x19

x25 = x4 · x19
x26 = x23 · x9
x27 = x7 · x5
x28 = x13 + x21

x29 = x14 + x27

x30 = x19 · x1
x31 = x16 + x26

x32 = x0 · x10
x33 = x26 + x32

x34 = x7 + x3

x35 = x9 · x29
x36 = x33 + x22

x37 = x29 · x24
x38 = x16 + x23

x39 = x15 + x37

x40 = x12 · x39
x41 = x34 + x7

x42 = x32 + x5

x43 = x12 + x26

x44 = x43 · x38
x45 = x38 + x14

x46 = x44 · x27
x47 = x22 + x24

x48 = x39 · x38
x49 = x21 · x3

x50 = x28 + x16

x51 = x15 + x38

x52 = x50 · x46
x53 = x19 + x2

x54 = x20 · x13
x55 = x21 + x22

x56 = x19 · x6
x57 = x46 + x1

x58 = x38 · x55
x59 = x47 + x29

Compilation

Have

x[0] = x[1] * x[2]

x[3] = x[0] * (x[4] * x[5] + x[6])

Want

protocol.init_mul();

protocol.prepare_mul(x[1], x[2]);

protocol.prepare_mul(x[4], x[5]);

protocol.exchange();

x[0] = protocol.finalize_mul();

tmp = protocol.finalize_mul() + x[6];

protocol.init_mul();

protocol.prepare_mul(tmp, x[0]);

x[3] = protocol.finalize_mul();

Toolchain Overview

Python high-level code

Compiler

Bytecode

Virtual machine

Compiler

▶ Implemented in Python

▶ Optimization (reduce network rounds)

▶ Library for various arithmetic:
integer, fractional, mathematical

▶ Machine learning functionality

Virtual machine
▶ One per protocol

▶ Implemented in C++ for speed

Links

https://eprint.iacr.org/2020/300

https://github.com/data61/MP-SPDZ

https://mp-spdz.readthedocs.io

https://eprint.iacr.org/2020/300
https://github.com/data61/MP-SPDZ
https://mp-spdz.readthedocs.io

