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Domain Trade-offs

Issue
Need to fix a domain for computation

I Arithmetic (modulo larger integer) is good for integer addition and multiplication

I Binary (modulo 2) is good for comparison etc.

Use both?
Need secure conversion because two different protocols implement two disconnected
black boxes.



Base Case: One Bit

Pre: I [x ]A in arithmetic domain, x ∈ {0, 1}
I [r ]A, [r ]B for r

$← {0, 1} (daBit = doubly authenticated bit)

Post: I [x ]B in binary domain

1. Compute and open [c]A = [x ⊕ r ]A = [x ]A + [r ]A − 2 · [x ]A · [r ]A

2. Output [x ]B = [r ]B ⊕ c = [r ]B + c (XOR is addition modulo 2)

Correctness
x ⊕ r ⊕ r = x



How To Generate daBits

Want
([r ]A, [r ]B) for random secret bit r

Protocol

1. Party i inputs random bit ri to [ri ]A and [ri ]B

2. Parties compute [r ]A and [r ]B by
⊕

i ri in both black boxes
(Reminder: x ⊕ y = x + y − 2xy ∈ Z)

Security

As with random bits earlier, one uniformly random bit makes the result uniformly
random at least for all other parties.



Generalizing to Any Value

Pre: I [x ]A in arithmetic domain, x ∈ Z2k

I ([r0]A, [r0]B), . . . , ([rk−1]A, [rk−1]B) for ri
$← {0, 1} (daBits)

Post: I [x0]B , . . . , [xk−1]B in binary domain such that x =
∑k−1

i=0 xi · 2i .

1. Compute and open [c]A = [x ]A −
∑k−1

i=0 [ri ] · 2i

2. Use a binary adder to add c and r in [·]B and output the result

Cost
k daBits and O(k) ANDs



Comparison with Mixed Circuits

Arithmetic-Only Comparison

I Compare difference to zero

I k random bits, O(k) multiplications

Mixed-Circuit Comparison with daBits

I Convert difference to binary circuit to access most-significant bit

I k daBits, O(k) ANDs

I daBits cost at least one multiplication (XOR),
so the cost is still O(k) multiplications



Better daBits

Problem
XOR in arithmetic circuit is expensive

Idea
Minimize computation in arithmetic circuit at the cost of more (cheaper) computation
in the binary circuit

Extended daBits
One value on arithmetic side:

([r ]A, [r0]B , . . . , [rk−1]B)

such that
r ∈ Z2k , (r0, . . . , rk−1)

$← {0, 1}



Extended daBit Generation

Want
([r ]A, [r0]B , . . . , [rk−1]B) such that r ∈ Z2k , (r0, . . . , rk−1)

$← {0, 1}

Protocol

1. Party i inputs random bits r i0, . . . , r
i
k−1 to [r i0]B , . . . , [r ik−1]B and∑k−1

i=0 ri · 2i to [r i ]A

2. Parties compute [r ]A =
∑

i [r
i ]A and [r0]B , ·[rk−1]B from {{[r ij ]}k−1j=0 }i∈P via binary

adder

Cost
I No arithmetic multiplications, just one input per party

I One binary adder per party, O(k) ANDs

I ANDs are typically an order of magnitude cheaper than arithmetic multiplications



Comparison Using Extended daBits

Protocol

1. Extract most significant bit after conversion

2. Convert back using daBit if needed

Cost
For n parties:

I O(n) arithmetic operations

I O(kn) binary operations



Extended daBits of Any Length

Previously

Arithmetic value random in full domain Z2k

⇒ Wrap-around makes overflow disappear

Want
r ∈ [0, 2l − 1], l 6= k

Challenge

r + r ′ 6∈ [0, 2l − 1] for r , r ′,∈ [0, 2l − 1] when computing in modulo 2k

Solution
Compute carry bits in binary domain and convert to arithmetic for correction



General edaBits Generation

Want
([r ]A, [r0]B , . . . , [rl−1]B) such that r ∈ Z2k , (r0, . . . , rl−1)

$← {0, 1}

Protocol*

1. Party i inputs random bits r i0, . . . , r
i
l−1 to [r i0]B , . . . , [r il−1]B and∑l−1

i=0 ri · 2i to [r i ]A

2. Parties compute [r0]B , ·[rl+dlog2(n)e−1]B from {{[r ij ]}l−1j=0}ni=0 via binary adder

3. Parties convert [rl ]B , · · · , [rl+dlog2(n)e−1]B to [·]A using daBits

4. Parties compute [r ]A =
∑

i [r
i ]A −

∑l+dlog2(n)e−1
i=l [ri ]A · 2i



General edaBit Cost

I As before: O(n) arithmetic inputs, O(nl) binary inputs

I O(n(l + log(n)) ANDs

I O(log(n)) daBits

I Nothing O(l) in arithmetic circuit



Probabilistic Truncation Using edaBits*

Pre: I [x ]A, x ∈ [0, 2k−1 − 1] ( Z2k

I (k − f − 1)-bit edaBit [r ], f -bit edaBit [r ′]
I Random bit [b]A

Post: I [y ]A such that y ≈ x/2f

1. Parties compute and open [c]A = [x ] + 2k−1 · [b]A + 2m · [r ]A + [r ′]A

2. Parties compute [v ]A = [b]A ⊕ c/2k−1 (indicating overflow)

3. Output (c mod 2k−1)/2m − [r ]A + 2k−1−m · [v ]A

I Computation only in arithmetic domain but edaBit generation requires mixed

I No O(k) or O(f ) cost in arithmetic domain

I Error the same as earlier



Section 1

Local Conversion



Setup

Previously

Generic methods for any computation over Z2k

Question
Use secret sharing directly for conversion?



Local Conversion for 2-Party Additive Secret Sharing

Additive Secret Sharing

x = x0 + x1 mod 2k

=
k−1∑
i=0

x0i · 2i +
k−1∑
i=0

x1i · 2i =
k−1∑
i=0

(x0i + x1i ) · 2i

Approach

(x ji , 0) is a valid secret sharing in binary because x ji ⊕ 0 = x ji .

⇒ Compute [x ]B from [x ji ]B with a binary adder.



Generate edaBits Using Local Conversion

Protocol for additive secret sharing

1. Parties generate r i
$← [0, 2l − 1], denote by [r ] the secret sharing defined {r i}

2. Parties use local share conversion to generate [rl ]B , . . . , [rl+dlog(n)e−1]B , the

overflow bits of
∑

i r
i

3. Parties use daBits to convert the overflow bits to [rl ]A, . . . , [rl+dlog(n)e−1]A

4. Parties output [r ]−
∑l+dlog(n)e−1

i=l [ri ]A · 2i


	Local Conversion

